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Collective Activity of Many Bistable Assemblies Reproduces
Characteristic Dynamics of Multistable Perception
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The timing of perceptual decisions depends on both deterministic and stochastic factors, as the gradual accumulation of sensory evidence
(deterministic) is contaminated by sensory and/or internal noise (stochastic). When human observers view multistable visual displays,
successive episodes of stochastic accumulation culminate in repeated reversals of visual appearance. Treating reversal timing as a
“first-passage time” problem, we ask how the observed timing densities constrain the underlying stochastic accumulation. Importantly,
mean reversal times (i.e., deterministic factors) differ enormously between displays/observers/stimulation levels, whereas the variance
and skewness of reversal times (i.e., stochastic factors) keep characteristic proportions of the mean. What sort of stochastic process could
reproduce this highly consistent “scaling property?” Here we show that the collective activity of a finite population of bistable units (i.e.,
a generalized Ehrenfest process) quantitatively reproduces all aspects of the scaling property of multistable phenomena, in contrast to
other processes under consideration (Poisson, Wiener, or Ornstein-Uhlenbeck process). The postulated units express the spontaneous
dynamics of attractor assemblies transitioning between distinct activity states. Plausible candidates are cortical columns, or clusters of
columns, as they are preferentially connected and spontaneously explore a restricted repertoire of activity states. Our findings suggests
that perceptual representations are granular, probabilistic, and operate far from equilibrium, thereby offering a suitable substrate for
statistical inference.

Key words: attractor cell assemblies; birth-death process; cortical columns; first-passage time; multistable perception; scaling
property

Introduction
Response time distributions reveal much about the neural mech-
anisms underlying perceptual decisions (Ratcliff and Smith,

2004; Smith and Ratcliff, 2009). A gradual and noisy accumula-
tion of sensory information, which triggers a choice response
when exceeding a criterion amount, explains the respective re-
sponse time distributions of correct and error responses as well as
their dependence on task factors, such as choice utility or the
desired speed or accuracy of response. In several instances, neu-
rophysiological studies were able to confirm and extend this
quantitative understanding (Schall, 2001; Sugrue et al., 2005;
Gold and Shadlen, 2007), revealing distinct cortical substrates for
accumulating and for evaluating sensory information (Resulaj et
al., 2009; Shadlen and Kiani, 2013).

Here we extend this approach to the multistable appearance
of ambiguous visual displays (Leopold and Logothetis, 1999;
Blake and Logothetis, 2002; Sterzer et al., 2009). Multistable sit-
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Significance Statement

Spontaneous reversals of high-level perception, so-called multistable perception, conform to highly consistent and characteristic
statistics, constraining plausible neural representations. We show that the observed perceptual dynamics would be reproduced
quantitatively by a finite population of distinct neural assemblies, each with locally bistable activity, operating far from the
collective equilibrium (generalized Ehrenfest process). Such a representation would be consistent with the intrinsic stochastic
dynamics of neocortical activity, which is dominated by preferentially connected assemblies, such as cortical columns or clusters
of columns. We predict that local neuron assemblies will express bistable dynamics, with spontaneous active-inactive transitions,
whenever they contribute to high-level perception.
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uations are characterized by spontaneous perceptual decisions in
the form of occasional, sudden reversals of visual appearance
(Leopold and Logothetis, 1999; Braun and Mattia, 2010). The
timing of such reversals depends primarily on stimulus factors
(Levelt, 1967; Brascamp et al., 2006) and only secondarily on
cognitive or task factors (e.g., Pearson et al., 2008).

Even though a dominant appearance is perceived as stable
until a reversal transpires, its robustness gradually declines, as
revealed by perturbation experiments (Wolfe, 1984; Nawrot and
Blake, 1989; Petersik, 2002; Kang and Blake, 2010). It is thought
that support for the currently dominant appearance degrades
while, simultaneously, support for an alternative appearance ac-
cumulates, until a critical differential is reached (Laing and
Chow, 2002; Wilson, 2003; Moreno-Bote et al., 2007; Noest et al.,
2007; Hohwy et al., 2008). The cortical sites associated with, re-
spectively, accumulating and evaluating competing evidence
from multistable displays (e.g., Knapen et al., 2011) appear to
overlap with the sites identified for choice tasks (Resulaj et al.,
2009; Shadlen and Kiani, 2013).

The reversal times of ambiguous displays have been charac-
terized in exquisite detail. Astonishingly, the distribution of re-
versal times maintains a characteristic, gamma-like shape (Levelt,
1967; Blake et al., 1971; Walker, 1975; De Marco et al., 1977;
Murata et al., 2003; Pastukhov and Braun, 2007), even though
mean reversal times vary widely between observers, displays, and
input levels (Fox and Herrmann, 1967; Borsellino et al., 1972;
Walker, 1975; Zhou et al., 2004; Brascamp et al., 2005). More-
over, the distribution in question is considerably more variable
(“wider”) and less skewed (“shorter-tailed”) than typical choice
time distributions (Carpenter, 2012; Pearson et al., 2014). The
constancy of distribution shape constitutes a “scaling prop-
erty”, as it implies that higher moments scale as appropriate
powers of the mean.

Here we ask the following: what sort of stochastic process could
reproduce both the scaling property and the short-tailed skewness of
reversal time distributions? What could guarantee, for all displays
and observers, that gradual accumulation of sensory information
leading to perceptual reversals is contaminated by proportional
noise: slower accumulations by less, and faster accumulations by
more noise? And what sort of process could ensure that reversal time
distributions are consistently short-tailed?

As a possible solution to this conundrum, we propose a finite
population of cortical columns or clusters that are individually
bistable in that they transition spontaneously between active and
inactive states (generalized birth-death or generalized Ehrenfest
[GE] process) (Karlin and McGregor, 1965; van Kampen, 1981;
Cao et al., 2014). The discreteness of such a representation would
automatically keep normalized moments constant and ensure a scal-
ing property. Moreover, the asymmetric fluctuations of a finite pop-
ulation would ensure a short-tailed distribution. The proposed
representation mimics the intrinsic stochastic dynamics of neocor-
tical activity, which is dominated by preferentially connected local
assemblies, such as cortical columns or clusters of columns.

Materials and Methods
Perceptual observations
Observers. Procedures were in accordance with the Declaration of Hel-
sinki and were approved by the medical ethics board of the Otto-von-
Guericke University (Magdeburg, Germany). All participants had
normal or corrected-to-normal vision, were naive to the purpose of ex-
periments, and were paid for participating.

Apparatus and general procedure. Stimuli were generated with
MATLAB (The MathWorks). Observers responded using a keyboard.
Background luminance was kept at 36 cd/m 2. The experimental room

was lit dimly (ambient luminance at 80 cd/m 2). For visual multistability,
we considered situations in which strong retinal inputs are spontane-
ously suppressed: motion-induced-blindness (MIB), binocular rivalry
(BR) (Campbell and Howell, 1972; Leopold and Logothetis, 1999; Bon-
neh et al., 2001), spontaneous reversals of illusory rotation in depth
(kinetic depth effect [KDE]) (Wallach and O’Connell, 1953; Sperling and
Dosher, 1994), spontaneous shifts in the apparent direction of motion
(moving plaids [MP]) (Adelson and Movshon, 1982; von Grünau and
Dubé, 1993), and spontaneous changes in the 3D appearance of line
drawings (Necker cube [NC]) (Meng and Tong, 2004). The datasets on
KDE, NC, and MP, as well as one of six datasets on BR, were published
previously (Pastukhov and Braun, 2007; Pastukhov et al., 2013). New
datasets were collected on MIB and on BR.

For auditory multistability, we considered spontaneous transitions
between auditory segregation and integration (auditory streaming)
(Bregman, 1994; Winkler et al., 2012). This dataset was kindly provided
by I. Winkler and S. Denham (personal communication).

For choice reaction tasks, we reanalyzed published information on
saccadic reaction times (saccade reaction time) (Carpenter, 2012) and
on working memory retrieval times (memory reaction time) (Pearson
et al., 2014). Both studies report timing densities for individual
observers.

Binocular rivalry. Six observers participated in the experiment (4 male,
2 female). Stimuli were displayed on an LCD screen (EIZO ColorEdge
CG303W, resolution 2560 � 1600 pixels, viewing distance 104 cm, single
pixel subtended 0.014°, refresh rate 60 Hz) and were viewed through a
mirror stereoscope. Chin and head rests were used to stabilize viewing
position.

Two grayscale circular orthogonally oriented gratings (45° and �45°)
were presented foveally to each eye. Gratings had diameter of 1.6° (spatial
period 2 cyc/deg). To avoid a sharp edge, grating contrast was modulated
with Gaussian envelope (starting inner radius 0.6°, � � 0.2°). Tilt and
phase of gratings were randomized for each block. Five contrast levels
were used as follows: 6.25%, 12.5%, 25%, 50%, and 100%. Contrast of
each grating was systematically manipulated, so that each contrast pair
was presented in two blocks (50 blocks in total). Each block was 2 min
long and separated by a compulsory 1 min break. Observers reported on
the tilt of the visible grating by continuously pressing one of two arrow
keys. They were instructed to press only during exclusive visibility of one
of the gratings, so that mixed percepts were indicated by neither key
being pressed (25 � 8% of total presentation time). To facilitate binoc-
ular fusion, gratings were surrounded by a dichoptically presented square
frame (outer size 9.8°, inner size 2.8°).

Motion-induced blindness. Twenty observers participated in the exper-
iment (12 male, 8 female). Stimuli were presented on a CRT screen
(Iiyama VisionMaster Pro 514, www.iiyama.com; resolution 1600 �
1200 pixels, refresh rate 100 Hz). The viewing distance was 73 cm so that
each pixel subtended �0.019°. Target was a yellow circle (diameter 0.2°),
presented 1° above the fixation. Mask rotated at 1 Hz and consisted of
8 � 8 grid of crosses (arm length 0.6°, intercross distance 0.15°). Observ-
ers reported episodes of target disappearance by keeping the space key
pressed for the entire duration of the episode. Blocks lasted 1 min and
were separated by a compulsory 30 s. In total, 32 experimental blocks
were measured for each observer.

Scaling property
Definitions and relevant quantities. A distribution of samples t is charac-
terized by moments of the distribution (density). Distribution shape
(Table 1) may be quantified in terms of the mean �1 � �t� and the central
moments �2 � �	t � �1


2�, �3 � �	t � �1

3�, etc., or, equivalently,

in terms of normalized moments, such as the coefficient of variation
cv � �2

1/2/�1 and the skewness �1 � �3/�2
3/2.

A scaling property obtains if central moments are proportional to
corresponding powers of the mean or, equivalently, if normalized mo-
ments are constant as follows:

�2 � �1
2, �3 � �1

3 N cv � const, �1 � const
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Denoting individual realizations of activity with x(t) and the ensemble
average with �x	t
�, the accumulation and dispersion rates are defined as
the respective time-derivatives of the mean and variance as follows:

vdrift �
d

dt
�x	t
�, vnoise �

d

dt
��x2	t
� � �x	t
�2

In the general case, these rates will be both input- and state-dependent. In
other words, they will change with both sensory input s and instanta-
neous activity x(t) as follows:

vdrift � vdrift	 x, s
, vnoise � vnoise	 x, s


If vdrift increases with input and activity x(t) traverses a range x0 �
x	t
 � �, the mean first-passage time (FPT) �1 � �tfp� is expected
to decrease with input s and increase with threshold � (compare Fig.
2), consistent with experimental observations. The same is true for
the central moments �2 and �3.

When activity x(t) remains far below an input-dependent steady-state
xin	s
 (drift-dominated regimen), the accumulation and dispersion rates
are independent of x(t) and therefore stationary as follows:

	drift	s, x
 ¡
x��xin

vdrift
� 	s
, 	noise	s, x
 ¡

x��xin

vnoise
� 	s


Together with threshold �, the stationary rates 	drift
� and 	noise

� are the minimal
ingredients for capturing the observed statistics of reversal times.

Sufficient condition for a scaling property. We now formulate a suf-
ficient condition between �, 	drift

� , and 	noise
� for coefficients of varia-

tion of FPTs to remain constant with input. This condition holds for
any drift-dominated accumulation (x �� xin; see Fig. 2A) in which
the variance of FPTs �t

2 � �t2� � �t�2 is proportional to variance of
activity �x

2 � �x2� � �x�2 at time �t�, so that the respective coeffi-
cients of variation are approximately the same (Wiener, Ornstein-
Uhlenbeck, Poisson, or Ehrenfest processes) as follows:

�t � �x f cv
	t
 � cv

	 x


Experimental evidence shows that increased input decreases the mean
time �t� of first passing a threshold � decreases. It follows that increased
input must increase accumulation rates 	drift

� as follows:

�t� � �/	drift
� , 	drift

� � f	 xin
, 
f/
 xin � 0

If 	noise
� remains constant with input, it further follows that the variance at

�t� decreases with 	drift
� and the coefficient of variation at �t� decreases

with the square root of 	drift
� as follows:

�x
2 � 	noise

� �t� � 	noise
� �/	drift

� � f�1	 xin
,

cv
	 x
 �

�x

�
� �	noise

� /�	drift
� � f�1/2	xin


so that no scaling property is obtained.
However, if both 	noise

� and 	drift
� increase with input in the same pro-

portions, the coefficient of variation remains constant as follows:

	noise
� � 	drift

� � f	 xin
 f cv � �	noise
� /�	drift

� � const

and the necessary condition for a scaling property is satisfied.

Stochastic processes under study
We summarize the salient characteristics of the stochastic processes
under discussion, in particular, the moments of the FPT distribu-
tions. Where explicit expressions are unavailable, we resorted to a
numerical integration of the related Langevin equation with standard
first-order methods (Risken, 1984). For each combination of xin and
�, we simulated 10 5 FPTs in time-steps of 0.01 s.

Balanced Poisson (BP) process
This process approximates excitatory and inhibitory inputs incre-
menting and decrementing the membrane potential of a neuron
(Tuckwell, 1988). Excitatory (respectively inhibitory) spikes arrive
with a fixed rate 	E (respectively 	I), so that either spike counts form
independent Poisson processes NE	t
 (respectively NI	t
). FPT is de-
fined as time t from initial count NE	0
 � NI	0
 � 0 to a threshold
count �. The distribution of FPT has mean �1 � �t�, coefficient of
variation cv, and skewness �1 (Tuckwell, 1988) as follows:

�1 �
�

	E � 	I
, cv � � 	E � 	I

� 		E � 	I

, �1 � 3� 	E � 	I

� 		E � 	I

� 3cv

Discrete Ehrenfest process
This generalized birth-death process is used in many contexts, includ-
ing statistical mechanics, chemical physics, and theoretical biology, to
model the statistical dynamics of macroscopic ensembles composed
of discrete microscopic units (Karlin and McGregor, 1965; van Kam-
pen, 1981; Emch and Liu, 2002; Ghosh et al., 2006; Cao et al., 2014).
We consider a population of N stochastic and bistable units, each
transitioning spontaneously and independently between inactive and
active states. Transition rates 	� (activation) and 	� (inactivation)
are assumed to be stationary. If n is the number of units active at a
given time (with 0 � n � N), the overall rate of upward transitions
within the population is 	N � n
	�, and the rate of downward
transitions is n	�. Because of this state dependence, the step distri-
bution of the discrete Ehrenfest process is asymmetric, especially
when n approaches the extremes of its range: n � 0 or
n � N. Moments of the FPT density may be obtained from the
renewal equation as finite sums over Krawtchouk polynomials, as
detailed previously (Cao et al., 2014).

Table 1. Comparison of investigated random-walk processesa

Name Type vdrift
� vnoise

� Scaling property
Distribution shape
cv � 0.6 & �1 � 2cv

Wiener Gaussian diffusion xin



�2



— —

Modified Wiener Gaussian diffusion xin



xin

�

√ —

Balanced Poisson Infinite birth-death vE � vI vE � vI √ —

Ornstein-Uhlenbeck Gaussian diffusion xin



�2



— —

Modified OU Gaussian diffusion xin



xin

�

√ —

Generalized Ehrenfest Finite birth-death v� v�

N

√ √

Continuous Generalized Ehrenfest Gaussian diffusion v� v�

N

√ —

aNormalized moments remain constant with input and a scaling property is obtained (in the drift-dominated regimen), when accumulation rate vdrift
� and dispersion rate vnoise

� increase with input in the same proportions. The
experimentally observed skewness is uniquely expressed by a generalized Ehrenfest process.
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Wiener process
A Wiener process combines constant (but input-dependent) accumula-
tion with constant dispersion and produces a noisy linear accumulation
(Cox and Miller, 1972). It satisfies a Langevin equation with constant
infinitesimal drift and variance,

ẋ � xin � ���	t


and normally distributed “white noise” �	t
 is defined as follows:

��	t
� � 0, ��	t
 �	t�
� � �	t � t�


From initial condition x0 � 0, the distribution of FPT to a threshold � is
an inverse Gaussian or Wald distribution (Tuckwell, 1988), with
moments as follows:

�1 �
�

xin
, cv �

�

�xin �
, �1 �

3�

�xin �
� 3cv

Ornstein-Uhlenbeck process
An Ornstein-Uhlenbeck process combines a state-dependent (as well as
input-dependent) accumulation with constant dispersion, resulting in a
noisy exponential relaxation to a steady-state state xss with zero drift (Cox
and Miller, 1972; Risken, 1984). It satisfies a Langevin equation with
state- and input-dependent infinitesimal drift, and constant infinitesi-
mal variance as follows:

ẋ � �x � xin � ���	t
, xss � xin

Moments of the FPT distribution have been derived in terms of infinite
series (Inoue et al., 1995), or in terms of nested integrals (Brunel, 2000).

Continuous Ehrenfest process
In the continuous limit, discrete random walks may be approximated by
Gaussian diffusion processes (Cox and Miller, 1972; Risken, 1984). For a
GE process, the continuous limit is a Cox-Ingersoll-Ross process (Cox et
al., 1985) in which both infinitesimal drift and variance are state- and
input-dependent (van Kampen, 1981) as follows:

ẋ � �x � xin � ��xin � �x	t


N
�	t


where � �
	� � 	�

	� � 	�
is proportional to the relative rate difference. The

step distribution of this process is Gaussian and therefore symmetric.

Escape process
To model instantaneous escape across an adapting threshold, we assume
that the instantaneous escape probability reflects normally distributed
noise with mean 0 and variance �2. Specifically, we compute the instan-
taneous probability that the noise exceeds the distance to the (time-
varying) threshold � 	t
 as follows:

pesc	t
 �
	

�2� �
	 xss�� 	t

/�

�

e�x�/ 2 dx�

where 	 is an escape rate. Dividing time into discrete intervals �t, we
approximate the FPT density f(t) as follows:

ln f	t
 � ln �pesc	n�t
 � �
i�0

n�1

ln �1 � pesc	i�t
 �t,

and evaluated the moments numerically.

Overview
Spiking neuron simulations. To illustrate a possible neural realization of a
GE process, we simulated “strongly coupled” assemblies of excitatory
and inhibitory neurons (see Fig. 8 A, B), with each assembly expressing a
spontaneous and independent bistable dynamics (Mattia et al., 2013).
Each such assembly comprised 125 excitatory leaky-integrate-and-fire
neurons (“foreground”), which were weakly coupled to an additional
875 excitatory neurons (“background”), as well as 250 inhibitory neu-

rons. The background population is not strictly necessary and included
here only for the sake of verisimilitude. The connection probability
between any two neurons was c � 80%. Excitatory synaptic efficacy
between “foreground” neurons, “background” neurons, and between
the two was Jfore � 0.618 mV, Jback � 0.438 mV, and Jinter � 0.402 mV,
respectively. Inhibitory synaptic efficacy was JI � �1.50 mV, and the
efficacy of excitatory synapses onto inhibitory neurons was JIE � 0.560
mV. Finally, “foreground” neurons, “background” neurons, and “inhib-
itory” neurons each received independent Poisson spike trains of 2340,
2280, and 2280 Hz, respectively. Other settings were as in Mattia et al.
(2013). As a result of these settings, “foreground” activity transitioned
spontaneously between a low state of �3 Hz and a high state of �40 Hz.

Weakly coupled assemblies (see Fig. 8C) were obtained by reducing
synaptic efficacies Jfore � 0.566 mV and Jback � 0.431 mV, as well as
increasing efficacies Jinter � 0.409 mV (to maintain overall level of activ-
ity). For “foreground” neurons (each with external Poisson inputs of
2400 Hz), the firing rate was �3 Hz. To reproduce the gradual accumu-
lation of activity by strongly coupled assemblies, we increased (at a suit-
able pace) external Poisson inputs to 2760 Hz, eventually raising the
firing rate to �30 Hz.

To analyze the spiking activity of “foreground” neurons, we established
the instantaneous average rate r(t) and generated a equally sized population
of “surrogate” neurons as nonhomogeneous Poisson point processes with
the same rate r(t). The statistics of “foreground” neuron spiking could then
be compared with that of “surrogate” neurons (see Fig. 8D,E).

Formal treatment of stochastic processes
Discrete and continuous random walks require different formal treat-
ments, namely, a Master Equation or a Fokker-Planck-equation, respec-
tively. We provide a brief synopsis of these approaches, to justify, or at
least indicate the origin of, the various results cited in the main text. A full
treatment may be found in Tuckwell (1988) and Risken (1984).

Discrete random walks
Continuous-time random walks in a discrete state-space K constitute a sub-
class of Markov processes and their individual realizations form lattice paths.
Such processes are governed by a set of gain-loss relations on the probability
of each state n �K, called the Master Equation as follows:

dPn	t


dt
� �

k�K,k�n

{Wk¡nPk(t) � Wn¡kPn(t)} (1)

where W denotes the transition rate from one state to another.
BP process. Given transition rates 	E, 	I, the Master Equation reads as

follows:

dPn	t


dt
� 	EPn�1	t
 � 	IPn�1	t
 n � �.

This can be solved analytically by means of the generating function
G(z, t) � �k Pk(t) zk, assuming initial conditions Pn	t � 0
 � �0n as
follows:

Pn	t
 � �	E

	I
	

n

2

e�		E�	I
t In	2t�vEvI


illustrated in Figure 7F, where

In	 x
 � �
k�0

�� 1

k!	k � n
! �x

2	
2k�n

is the modified Bessel function of the first kind.
GE process. Given transition rates 	�, 	�, the Master Equation reads

as follows:

dPn	t


dt
� �N � 	n � 1
	� � Pn�1	t
 � 	n � 1
	� � Pn�1	t


� �	N � n
	� � n	� � Pn	t
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For initial condition, Pn	t � 0
 � �0n, the Master Equation may be
solved as before to obtain the following:

Pn	t
 � �N
n	 � p	1 � e�t/in
n

� � pe�t/in � qN�n t¡�
¡ �N

n	 pnqN�n

where in �
1

	� � 	�
, p � 	�in � xin, and q � 1 � p � 	�in.

The time evolution of this distribution is illustrated in Figure 7E.

Continuous random walks
Gaussian random walks in a continuous state-space can derive from the
continuous limits of discrete state-space diffusion processes (Cox and
Miller, 1972). Typically, continuous processes are more tractable, both
analytically and numerically, than their discrete counterparts. The time-
dependent probability density p(x, t) of a continuous random variable
x(t) is governed by a Fokker-Planck equation (Risken, 1984) as follows:



p	 x,t



t
� �





 x
	�	 x, xin
 p	 x,t

 �

1

2


2


 x2	�2	 x, xin
 p	 x,t



where �	x, xin
 and �	x, xin
 represent “accumulation” or “drift” and
“dispersion” or “noise,” respectively. In general, both terms may depend
on the current state x and on external input xin. For instance, in the
continuous limit of the GE process, accumulation and dispersion rates
reflect the input-dependent individual transition rates as well as the
number of units available for activation or inactivation. The total rates of
increments �� and decrements �� (see Fig. 7 A, B) are as follows:

�� � N 	� 	1 � x
 � N xin 	1 � x
/in,

�� � N 	� x � N 	1 � xin
 x / in,

where x is instantaneous activity (fraction of active units), and are shown
in Fig. 7C, D. Therefore, the infinitesimal drift and variance are as
follows:

�	 x, xin
 �
1

N
	�� � ��
 �

xin � x

in

�2	 x, xin
 �
1

N2 	�� � ��
 �
xin � �x

N
, � �

	� � 	�

	� � 	�

and are shown in Figure 7C, D.
The dynamics of single realizations of such a process are described by

a stochastic differential equation (Langevin equation) as follows:

ẋ � �	 x, xin
 � � �	x, xin
 �	t


where �	t
 is normally distributed “white noise.” The Langevin formula-
tion makes clear that the drift term describes a deterministic force that is
identical on every trial, whereas the noise term captures stochastic forces
that differ from trial to trial.

Results
To assess how well (or poorly) multistable phenomena conform
to a scaling property, we obtained and compared observations
from six canonical multistable situations (five visual, one audi-
tory). We also considered two choice reaction tasks as examples
of “normal” vision.

Wide range of mean dominance periods
In multistable phenomena, mean dominance periods vary
widely with stimulus strength, observer, and display type. A
particularly well-studied situation is BR, where both left and
right eye contrast may be varied (Levelt, 1967; Moreno-Bote et
al., 2010). A representative set of observations is summarized
in Figure 1A. For a given observer, mean dominance periods
varied fourfold between 25 contrast combinations (a 5 � 5
matrix of left and right eye contrasts; see Materials and Meth-
ods). Importantly, mean dominance periods decreased with
stimulus contrast. Between observers, mean dominance peri-
ods differed by a further factor of 4. Between different display
types, mean dominance periods ranged even more widely, as
illustrated in Figure 1B, C. More than six types of multistable
visual displays (BR, KDE, MIB, MB, NC) and one multistable
auditory scene (auditory streaming), mean dominance peri-
ods varied over 2 orders of magnitude, from �1 s to �100 s
(see Materials and Methods).

Compared with mean dominance periods, choice reaction times
are far less variable. A twofold range with stimulus strengths or be-
tween observers appears typical (Carpenter, 2012; Pearson et al.,
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Figure 1. Scaling property of multistable perception. A, SD and mean �1 of the distribution of dominance durations. Individual values (round symbols) for 25 contrast combinations of BR and 6
observers (different colors). Proportionality is maintained both across conditions (contrast combinations) and across observers. Linear regression (colored lines) yields a highly consistent
cv � 0.66 � 0.04 (mean � SD). B, C, Normalized moments for the distribution of dominance durations observed with different multistable perceptions: auditory streaming (AS), binocular
rivalry (BR), kinetic-depth effect (KDE), motion-induced blindness (MIB), moving plaids (MP), and Necker cube (NC). Several stimulus conditions are shown for BR and MP. For comparison, saccade
reaction time (SRT) and memory reaction time (MRT) are included as well. B, Coefficient of variation cv, as a function of the mean �1. All multistable situations exhibit comparable variability, with
cv � 0.6 (dashed line). C, Skewness �1, in multiples of cv, as a function of the mean �1. All multistable situations exhibit comparable skewness, with � � 2cv (dashed line). B, C, Shaded areas
represent 1 and 2 SEM across observers. The size of the SEM ellipses reflects the number of observers in each case, which ranged from 3 to 59 (see Materials and Methods).
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2014). The two choice reaction tasks illustrated here span the full
range of human reaction times, from 100 ms to 1 s (Fig. 1B,C).

Invariant shape of dominance distribution
The intuitive definition of a scaling property is that distributions
exhibit identical shape when scaled to their respective distribu-
tion mean. Formally, a scaling property obtains if central mo-
ments �2 and �3 are proportional to corresponding powers of the
mean �1 as follows:

�2 � �1
2, �3 � �1

3

or, equivalently, if normalized moments, such as the coefficient
of variation cv or the skewness �1 are constant (see Materials and
Methods) as follows:

cv � const, �1 � const

Multistable phenomena maintain a remarkably strict scaling
property over different stimulus strengths, observers, and display
types. For example, the SD of the dominance distribution is
(nearly) proportional to the mean, as illustrated by the linear
regression lines in Figure 1A.

To assess the generality of this finding, we established the
mean, SD, coefficient of variation, and skewness of the distribu-
tion of dominance periods for different visual and auditory con-
ditions: auditory streaming, MIB, NC, and KDE, BR for stimulus
contrasts c � �0.06, 0.12, 0.25, 0.5, 0.6, 1.0�, and MP for contin-
uous display, intermittent display, and intermittent display with-
out attention (Pastukhov and Braun, 2007). Figure 1B, C
illustrates the results in terms of the mean and SEM across ob-
servers. The coefficient of variation remained consistently near
cv � 0.6 (Fig. 1B) and the skewness remained consistently near
near �1 � 2cv (Fig. 1C), the value corresponding to a Gamma
distribution. In other words, a strict scaling property was main-
tained over all investigated situations.

Choice reaction times do not conform this pattern. Distribu-
tion means are less variable and distribution shapes combine
smaller variance ((cv � 0.2) with greater skewness (� � 6cv).

To summarize, the dominance distribution of multistable phe-
nomena exhibits a scaling property with three aspects: (1) distribu-
tion shape (normalized moments) is highly preserved across
conditions (stimulus strengths, observers, and display types); (2)
distribution variance is comparatively large (cv � 0.6) and distribu-
tion skewness comparatively small (�1 � 2cv), corresponding to a
gamma distribution; and (3) distribution mean varies widely across
conditions and decreases with stimulus strength.

Dominance durations as FPTs
Our aim is to compare the ability of various stochastic processes
to reproduce the scaling property of multistable perception. An
FPT framework (Fig. 2) provides convenient and concise terms
for this purpose. In this framework, the timing of perceptual
events (such as a choice response or a perceptual reversal) is
interpreted as the first passage of a threshold by some underlying
neural activity. Specifically, this activity is assumed to grow from
some initial level toward the threshold level due to both deter-
ministic and stochastic factors (i.e., factors that remain the same
and that change randomly, respectively, from trial to trial).

FPT models account well for response time densities in many
task situations (Ratcliff and Smith, 2004; Smith and Ratcliff,
2009; Carpenter, 2012; Pearson et al., 2014). They should not be
taken literally in the sense that activity necessarily accumulates
in a single neural population. More likely, sensory information

accumulates concurrently in several competing populations, so
that a threshold is reached when the differential activity exceeds a
certain value (e.g., Usher and McClelland, 2001; Smith and
Ratcliff, 2009; Bundesen et al., 2015).

In the case of multistable reversals, the available evidence sup-
ports a differential threshold in that the currently dominant rep-
resentation appears to degrade while, concurrently, the currently
suppressed representation appears to recover (Wolfe, 1984;
Nawrot and Blake, 1989; Petersik, 2002; Kang and Blake, 2010).
One conceivable scenario is that gradated representations at sen-
sory levels interact with categorical representations at perceptual
levels. Perhaps differential activity at sensory levels progressively
diverges from differential activity at perceptual levels, until the
latter becomes destabilized and dominance reverses. This tempo-
rarily realigns the two levels and the cycle begins anew. However,
here we are not concerned with such details. We simply assume
that dominance periods reflect the time at which stochastically
accumulating (differential) activity exceeds a fixed threshold for
the first time, in other words, that reversal times represent FPTs
of one sort or another.

FPT models may operate in two distinct regimens, illustrated
in Figure 2. In drift-dominated regimens, deterministic forces are
sufficient to drive activity to threshold. Stochastic forces merely
introduce some variability (Fig. 2A). In noise-dominated regi-
mens, deterministic forces drive activity toward a steady-state,
which lies some distance below threshold (Fig. 2B). Stochastic
forces are needed to drive activity away from steady-state (filled
arrow), such as to cover the remaining distance to threshold
(open arrow). The difference is best appreciated in an effective
energy landscape visualization: the energy gradient takes oppo-
site sign at threshold (Fig. 2A,B, open arrows).

It is intuitive that FPT density depends sensitively on both
deterministic and stochastic forces over the entire activity
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Figure 2. FPTs of a threshold level � by stochastic neuronal activity x(t). In this framework, a
perceptual decision or reversal is triggered when x	t
 � � for the first time. A, In a drift-
dominated regimen, deterministic forces drive activity to � (open arrow) and beyond. B, In a
noise-dominated regimen, deterministic forces drive activity merely to a steady-state (filled
arrow), some distance below � (open arrow). Thus, � may be reached only with the help of
stochastic forces (noise). A, B, In both regimens, individual realizations of neural activity x(t)
develop from an initial level (black dashed line) to a threshold level (blue dashed line, open
arrows). Because of stochastic factors, every realization reaches threshold at a different time
(open circles). This variability results in a probability distribution of FPT, which is illustrated on
the right. Deterministic forces may be visualized in terms of an energy landscape, which is
shown below. The sign of the energy gradient at threshold (open arrow) distinguishes drift- and
noise-dominated regimens.
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range traversed. A change to any single variable, deterministic
force, stochastic force, or traversed range, will alter the FPT
density and all of its moments. In general, first and higher
moments will not change in a proportional manner. The fol-
lowing sections will show that two or more variables must
change in a proportional manner for a scaling property to
come about.

Comparison of stochastic processes
Stochastic processes may be compared in terms of the rates with
which they deterministically “accumulate” and stochastically
“disperse” activity over time (for definition, see Materials and
Methods). In general, accumulation rate 	drift	s, x
 and disper-
sion rate 	noise	s, x
 will depend both on sensory input s and on
instantaneous activity x(t). Together with initial activity and
threshold activity �, these quantities determine the statistics of
reversal times.

The following sections compare various stochastic processes
in search of a parsimonious explanation for a scaling property.
We begin with current models of perceptual decisions and mul-
tistable reversals, which use continuous stochastic processes with
constant noise (Wiener process, Ornstein-Uhlenbeck process).
Next, we modify these models with input-dependent noise.
Finally, we consider discrete stochastic processes (Poisson pro-
cess, Ehrenfest process), where deterministic and stochastic
forces share a common physical origin.

Continuous stochastic processes with constant noise
Perceptual decisions are commonly modeled in terms of
diffusion-like processes (Smith, 2000; Ratcliff and Smith,
2004; Smith and Ratcliff, 2009; Smith et al., 2014). Whereas
mean accumulation (drift) is assumed to vary with input, sto-
chastic dispersion (noise) and threshold level are assumed to
be constant (Wiener process). The possibility that accumula-
tion varies with activity and vanishes for a particular steady-
state level (Ornstein Uhlenbeck process) has also been
considered (Smith, 2000; Smith et al., 2014). Multistable re-
versals are widely modeled in similar terms but additionally
invoke an adapting threshold (Laing and Chow, 2002;
Moreno-Bote et al., 2007; Noest et al., 2007; Wilson, 2007;
Shpiro et al., 2009; Moreno-Bote et al., 2010; Seely and Chow,
2011). We now consider each of these possibilities in turn.

In a Wiener process, the accumulation rate changes with sen-
sory input s, but the dispersion rate (noise) remains constant as
follows:

	drift
� �

xin	s



, 	noise

� �
�2


, x0 � x	t
 � � (2)

where  is a characteristic time and � is noise amplitude. Drift
must be positive, and the development of x(t) is always drift-
dominated (Fig. 2A). The moments of the FTP depend on xin	s

and threshold � and are illustrated in Figure 3A (middle col-
umns). Whereas the mean �1 shortens with xin and lengthens
with threshold �, the coefficient of variation cv decreases with
both input xin and �. The skewness is consistently high with
�1 � 3cv. The experimentally observed scaling property is not
reproduced (Fig. 3A, rightmost column).

In an Ornstein-Uhlenbeck process, the infinitesimal drift
varies with activity and vanishes for x	t
 � xin as follows:

	drift
� �

xin	s



, 	noise

� �
�2


, x0 � x	t
 � � (3)

The threshold-crossing of x(t) is drift-dominated when xin � �,
but noise-dominated when xin � � (Fig. 2). In both regimens,
FPT moments may be obtained analytically (Inoue et al., 1995;
Brunel, 2000) or numerically (Fig. 3B, middle columns). A scal-
ing property is reproduced neither by noise-dominated nor by
drift-dominated regimens. In both cases, the coefficient of varia-
tion cv varies with xin and skewness �1 � 3cv is too high.

Finally, current models of multistable perception additionally
assume a time-dependent threshold � 	t
 that progressively de-
creases with a characteristic time A. Assuming that x(t) fluctuates
spontaneously about a constant mean and that a reversal occurs
instantaneously whenever x	t
 � � 	t
, the moments of FPT may
be obtained analytically (Molini et al., 2011) or by numerical
simulation (Fig. 3C, middle columns). Similar to the Ornstein-
Uhlenbeck process, both noise-dominated and drift-dominated
regimens are obtained. In both regimens, the coefficient of vari-
ation cv varies with input.

Interestingly, the skewness ranges from �1 � 3cv in the noise-
dominated regimen to �1 � cv in the drift-dominated regimen.
The experimentally observed skewness of �1 � 2cv obtains only
for one particular combination of of xin and � (Fig. 3C, middle
columns, arrow). This confirms and extends previous reports
that a precise balance between adaptation and noise is required to
attain the characteristic, gamma-like distribution of multistable
reversals (van Ee, 2009; Pastukhov et al., 2013).

To summarize, if the accumulation rate 	drift
� varies with input

while the dispersion rate 	noise
� remains constant, the normalized FPT

moments vary with input and a scaling property is not obtained. This
conclusion holds independently of details, such as the presence or
absence of a steady-state or of an adapting threshold.

Continuous stochastic processes with input-dependent noise
The previous section showed that a scaling property cannot be
obtained if only accumulation rate, but not dispersion rate,
changes with input. Accordingly, we now consider scenarios
where accumulation and dispersion change proportionally with
sensory input s.

A modified Wiener process with input-dependent dispersion
(noise) is as follows:

	drift
� �

xin	s



, 	noise

� �
xin	s


�
, x0 � x	t
 � �

(4)

has the FPT moments illustrated in Figure 4A (middle columns). As
expected, the normalized moments cv and �1 remain constant with
xin, whereas mean FPT spans a wide range of values. The constant �
determines the requisite threshold precision. The higher its value,
the narrower the range of thresholds over which a given range of cv is
obtained. However, the skewness is �1 � 3cv higher than experi-
mentally observed (Fig. 4A, rightmost column).

A modified Ornstein-Uhlenbeck process with input-
dependent dispersion (noise) (Cox et al., 1985) is as follows:

	drift
� �

xin	s



, 	noise

� �
xin	s


�
, x0 � x	t
 � �

(5)

exhibits the FPT moments illustrated in Figure 4B (middle col-
umns). In the drift-dominated regimen, the FPT density is
modulated similarly as in a Wiener process. In the noise-
dominated regimen, the FPT density resembles that of the origi-
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nal, unmodified Ornstein-Uhlenbeck process. As before,
skewness �1 � 3cv is consistently higher than experimentally
observed (Fig. 4B, rightmost column).

To summarize, maintaining the proportionality 	noise
� � 	drift

�

ensures the constancy of normalized moment in drift-dominated
regimens. However, the experimentally observed skewness of
�1 � 2cv cannot be reproduced. The reason is that all processes
with symmetric noise, so-called Gaussian diffusion processes, are
characterized by an inverse Gaussian or Wald distribution of FPT
with �1 � 3cv (Tuckwell, 1988).

Processes with discrete stochastic events
The two previous sections showed that a scaling property ob-
tains when sensory input affects accumulation and dispersion
proportionally. A natural way to ensure this proportionality
are processes comprising discrete and spontaneous events,
such as Poisson events, simply because event rate will affect
both accumulation and dispersion. Several levels of neural
activity may be described in terms of Poisson events (e.g.,
spikes, up-state and down-state transitions, avalanches). We
now consider two complementary examples: a BP process and
a GE process.

A BP process combines two independent Poisson processes
contributing, respectively, activity increments and decrements of
unit size with homogeneous rates 	E and 	I Tuckwell (1988).
Several realizations n(t) of such a process are illustrated in Figure
5A. In the illustrated example, the initial distribution is determin-
istic with p	n, t � 0
 � �	n � 4
 and 	E � 4.8 Hz is comfort-
ably larger than 	I � 3.2 Hz, ensuring that mean and variance of
x(t) increase linearly over time. The evolution of p(n, t) over time
is illustrated in Figure 7E.

In general, the accumulation and dispersion rates are as
follows:

	drift
� � 	E � 	I, 	noise

� � 	E � 	I, n � �n (6)

and a scaling property is guaranteed (Fig. 6A), provided sensory
input s changes the event rates in a proportional manner, so that
the proportionality between accumulation and dispersion is
maintained as follows:

	E	s
 � 	I	s
 � f	s
 f 	drift
� � 	noise

�

However, the skewness �1 � 3cv is once again larger than exper-
imentally observed. The reason is that a BP process remains a
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Figure 3. Continuous stochastic processes with constant noise: normalized moments of FPT density as functions of input xin and threshold � (both in units of �). Leftmost column, Energy
landscape and evolution over time (schematic). Middle left and right columns, Coefficient of variation cv and skewness �1 (in units of cv). Black curves represent cv � 0.6. Black arrows indicate the
distribution shape of multistable perception (cv � 0.6 and �1 � 2cv). Dashed line indicates a particular choice of threshold �. Rightmost column, FPT distribution shape as function of mean
�1 (format as in Fig. 1B, C). For constant � (value given by inset), �1 decreases as xin increases from 0 to 1. A, Input-dependent drift and constant noise (Wiener process). B, Input- and
activity-dependent drift and constant noise (Ornstein-Uhlenbeck process). C, Adaptation of threshold and instantaneous escape (current models of multistable perception).
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diffusive process (despite its discrete nature), in that activity dis-
perses symmetrically, as shown in Figure 7F.

We now compare and contrast a GE process, in which discrete
increments and decrements of activity originate within a finite
population of spontaneously bistable units (Fig. 5B–D). Such a
population may become saturated or depleted, so that activation
(inactivation) rates will vary with the number of inactive (active)
units. This renders both accumulation and dispersion rates de-
pendent on current activation x, with important consequences
for FPT moments. Originally introduced in 1907 as the famous
“dog-flea” model of diffusion, this generalized birth-death pro-
cess provides a minimal model for the statistical dynamics of
many microscopic and mesoscopic systems (Karlin and
McGregor, 1965; van Kampen, 1981; Emch and Liu, 2002; Ghosh
et al., 2006; Cao et al., 2014).

We consider a population of N bistable units, each of
which transitions spontaneously between inactive and active
states. The transitions are independent Poisson events with rates
	� � 	�	s
 (activation) and 	� � 	�	s
 (inactivation), set by
sensory input s. Additionally, we assume that the ratio 	�/	�

grows monotonically with sensory input s as follows:

1 � x º
	�

	�

x, d/ds		�/	�
 � 0.

On average, x(t) relaxes exponentially to a steady-state activation
xin with a characteristic time in, both of which change with sen-
sory input s as follows:

xin	s
 �
	�

	� � 	�
, in	s
 �

1

	� � 	�
.

This simple behavior of the average is deceptive, however, for the
detailed dynamics is considerably more complex. Several realiza-
tions x(t) are illustrated in Figure 5B. Starting from a determin-

istic initial state (n0 � 4), mean and variance of x(t) increase
linearly over time, as 	� � 0.06 Hz is comfortably larger than
	� � 0.04 Hz. The realizations of the GE process remain more
compact than those of the BP in Figure 5A, even though the total
increment and decrement rates are identical (	� N � 4.8 Hz and
	� N � 3.2 Hz). The difference is even more evident in the
evolution of activity p(x, t) over time. Comparing the GE process
(Fig. 7F) with the BP process (Fig. 7E), two qualitative differences
are apparent: the GE accumulation is faster and the GE dispersion
is asymmetric. We now consider the reasons for these important
differences.

In a GE process, accumulation and dispersion rates reflect the
input-dependent transition rates as well as the number of units
available for activation or inactivation. As the two populations
are typically of unequal size, increment and decrement rates may
differ considerably. The resulting infinitesimal drift and variance
(see Materials and Methods) are as follows:

	drift
� � 	�	s
, 	noise

� �
	�	s


N

and are shown in Figure 7C, D. At low activation levels x �� 0.5,
increments are far more frequent than decrements, explaining
the two qualitative features, fast accumulation and asymmetric
dispersion, mentioned above.

Next, we turn to the moments of the FPT density and their
dependence on xin and �. Given an activity range x0 � x(t) � �,
FPT moments may be obtained analytically (Cao et al., 2014) and
are illustrated in Figure 6B (middle columns). In the drift-
dominated regimen xin � � (indicated by arrows), normalized
moments cv and �1 remain nearly constant with changing input
xin. Moreover, the skewness asymptotes to the experimentally
observed value �1 � 2cv (Fig. 6B, rightmost column). Only a
small distance � � x0 between threshold and initial condition is
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Figure 4. Continuous stochastic processes with input-dependent noise: normalized moments of FPT density as functions of input xin and threshold �. Leftmost column, Energy landscape and
evolution over time (schematic). Middle left and right columns, Coefficient of variation cv and skewness �1 (in units of cv). Black curves represent cv � 0.6. Rightmost column, FPT distribution shape
as function of mean �1 (format as in Fig. 1B, C). For constant � (value given by inset), �1 decreases as xin increases from 0 to 1. A, Input-dependent drift and noise (modified Wiener process). B,
Input- and activity-dependent drift and noise (modified Ornstein-Uhlenbeck process).
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required to obtain cv � 0.6. These conclu-
sions hold for any initial condition and
threshold in the low-activity regimen
x �� 0.5 where the coefficient of variation
is approximately (Cao et al., 2014) the
following:

cv 
 1/�	� � x0
 N

In the limit of large xin, the FPT density of
a GE process approaches an exact gamma
distribution, with skewness �1 � 2cv and
excess kurtosis �2 � 6 cv

2.
To summarize, a GE process operating

far from steady-state (x �� xin) repro-
duces the scalar property of multistable
perception for two reasons. First, both ac-
cumulation and drift increase propor-
tionally with xin, ensuring nearly constant
normalized moments cv and �1 (Fig.
7C,D). Second, positive accumulation is
strong and negative accumulation negligi-
ble (Fig. 7A,B). This entails an asymmet-
ric (non-Gaussian) dispersion that “thins
out” realizations lingering near x0 and
keeps the activity distribution compact
and asymmetric (Fig. 7E). The compara-
tively compact dispersion of activity then
translates into a short-tailed FPT distribu-
tion with skewness �1 � 2cv.

Finally, to conclusively demonstrate
the importance of asymmetric noise, we
compare the discrete GE process with its
continuous equivalent, a Cox-Ingersoll-
Ross process where the infinitesimal drift
and variance �	x, xin
 and �2	x, xin
, are
both input- and state-dependent. In the
drift-dominated regimen, accumulation
and dispersion rates are as follows:

	drift
� � 	�	s
, 	noise

� �
	�	s


N
,

0 � x	t
 � � (7)

Even though this process matches both
the accumulation rates 	drift

� and the dis-
persion rates 	noise

� of the discrete GE pro-
cess, it is a Gaussian diffusive process and
operates with symmetric noise. The moments of the FPT density
are illustrated in Fig. 6C (middle columns). As with the original,
discrete process, both cv and �1 remain constant with changing
xin. However, unlike the discrete process, the skewness asymp-
totes to the larger value �1 � 3cv of an inverse Gaussian distri-
bution (Fig. 6C, rightmost column).

We conclude by listing the necessary and sufficient conditions
for reproducing the scaling property of multistable perception as
follows: (1) a population of N discrete, locally bistable units that
spontaneously activate and inactivate with rates 	� and 	�,
respectively; (2) the relative rate 	�/	�, and thus also the steady-
state activation xin � 	�/		� � 	�
, grows with sensory input s;
(3) both initial and threshold activation are comparatively small
and far from steady-state, x �� xin; (4) population size N is lim-
ited by threshold precision; and (5) to obtain the experimentally

observed coefficients of variation cv � 0.6, the distance between
threshold and initial condition must be small, � � x0 � 0.05.

Neuronal realization of GE process
A neuronal realization of collective activity accumulating in a
population of locally bistable assemblies is illustrated in Figure 8.
We simulated 20 assemblies of strongly coupled spiking neurons,
each balancing excitation and inhibition, such as to express a
bistable attractor dynamics. Activations and inactivations oc-
curred spontaneously, driven by endogeneous activity fluctua-
tions (finite-size noise), and both transition rates changed with
external input (for details, see Materials and Methods). To
initiate a stochastic accumulation of collective activity, we
abruptly altered external input, such as to raise the steady-state
fraction of active assemblies from near zero to near unity. The
spike raster in Figure 8A shows individual assemblies activating at
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different (random) times and, superimposed, the progressive in-
crease of the mean firing rate over all assemblies. The trajectory of
collective activity is more predictable than are individual activa-
tions. If the threshold for collective activity is low, so that the
entire accumulation proceeds far from steady-state, the FPTs of
collective activity will reproduce the scaling property of multi-
stable perception (compare Fig. 5B–D). Figure 8B shows a slightly
different situation, with an initial steady-state fraction of x0 � 0.2
active assemblies. In this case, individual assemblies both activate
and (less often) inactivate at different (random) times. Once
again, the progressive increase of collective activity can reproduce
the scaling property of multistable perception.

For comparison, we also illustrate an alternative scenario that
accumulates collective activity in a comparable way but cannot
reproduce a scaling property (Fig. 8C). For this purpose, we
simulated assemblies of weakly coupled spiking neurons, which
do not express a bistable dynamics. Instead, the activity of each
assembly fluctuates endogenously (finite-size noise) about a
steady-state that is set by external input. To obtain a stochastic
accumulation, we gradually increased external input, such as to
raise the steady-state from low to high activity. The spike raster
shows individual assemblies becoming progressively more active
and, superimposed, the collective activity from all assemblies.

By construction, the alternative scenarios illustrated by
Figure 8A, C are indistinguishable in terms of the time-varying
average spike rate r(t). (This is true for arbitrary subsets of
neurons.) Nevertheless, even at the single-cell level, a bistable
dynamics of individual assemblies is detectable in terms of
the variability of firing rates and the distribution of interspike
intervals. These telltale features are particularly evident com-
pared with inhomogeneous Poisson spikes with identical av-
erage rate r(t). Specifically, the SD of the instantaneous firing
rate increases significantly during the rising phase of the accu-
mulation (Fig. 8D) and the interspike interval distribution
emphasizes extremes (short and long intervals) at the expense
of the middle (Fig. 8E).

Discussion
We have examined the possibility that the highly consistent sta-
tistics of multistable phenomena may reflect the qualitative na-
ture of perceptual representations. The macroscopic laws of
physical systems often depend more on the qualitative nature
than on the details of their microscopic constituents (Haken,
1975), and this may hold also for large-scale brain activity (Break-
spear and Jirsa, 2007).
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Figure 6. Processes with discrete stochastic events: normalized moments of FPT density as functions of input xin and threshold �. Leftmost column, Energy landscape and evolution over time
(schematic). Middle left and right columns, Coefficient of variation cv and skewness �1 (in units of cv). Black curves represent cv � 0.6. Black arrows indicate distribution shape of multistable
perception (cv � 0.6 and �1 � 2cv). Rightmost column, Distribution shape as function of mean �1 (format as in Fig. 1B, C). For constant � (value given by inset), �1 decreases as xin increases
from 0 to 1. A, Stochastic increments and decrements with input-dependent rates (homogeneous Poisson process). B, Stochastic increments and decrements generated by a finite population of
discrete units (GE process). C, Limit of ever smaller increments and decrements generated by ever more units (continuous limit of GE process).
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Current models of multistability
Current models of multistable perception seek to capture the
interplay between stabilizing and destabilizing factors thought to
underlie perceptual reversals. First, competition between alterna-
tive appearances stabilizes whichever currently dominates (Blake
et al., 1990; Alais et al., 2010). Second, neural adaptation progres-
sively weakens the dominant representation, shortening its per-
sistence (Wolfe, 1984; Petersik, 2002; Kang and Blake, 2010).
Third, neural noise initiates stochastic perceptual reversals (Hol-
lins, 1980; Brascamp et al., 2006; Kim et al., 2006; Sterzer and
Rees, 2008). Typically, such models seek to account for the oc-
currence of reversals, the rate of reversals, and its dependence on
stimulus strength (Laing and Chow, 2002; Wilson, 2003; Molda-
karimov et al., 2005; Moreno-Bote et al., 2007; Noest et al., 2007;
Shpiro et al., 2007; Wilson, 2007; Shpiro et al., 2009; Seely and
Chow, 2011; Pastukhov et al., 2013). Because these models com-
bine a fast, stochastic process (noisy competition for dominance)
with a slow, deterministic process (adaptation), they can be ide-
alized as a fast escape with slowly adapting threshold.

The reasons why current models fail to reproduce the experi-
mentally observed statistics are straightforward. First, they as-
sume that the slow process (adaptation, corresponding to our
accumulation rate 	drift) changes with sensory input, whereas
the fast process does not (noise, corresponding to our dispersion
rate 	noise). To obtain a scaling property, both adaptation and
noise would have to vary with sensory input s (see Materials and

Methods). Second, current models assume symmetric disper-
sion, which necessarily yields heavier-tailed FPT distributions
with �1 � 3cv (see Figs. 3A,B, 4A,B, 6C, 7E).

It is true that, for a given input strength, the experimentally
observed skewness (�1 � 2cv) may be obtained by precisely
matching adaptation rate and noise amplitude (Pastukhov et
al., 2013) (Fig. 3C, middle panels, arrows). However, to obtain
a scaling property, both adaptation rate and noise amplitude
would have to be matched anew for each input strength.

A finite population of bistable units accumulating activity far
from equilibrium
To explain the observed statistics of multistable perception, we
propose to replace the slow, deterministic process of current
models (adaptation) with a discrete random walk (GE process).
This is consistent with a suggestion of van Ee (2009), who has
argued previously that reversal timing reflects a slow random
walk rather than a deterministic relaxation, on the grounds that
reversal timing is not entirely “memoryless” (Pastukhov and
Braun, 2011). We do not see a need to change the fast, stochastic
processes of current models, which provide the mechanism for
reversals, and which in any case are beyond the scope of the
present work.

Specifically, we propose that the neural representations underly-
ing alternative perceptual appearances exhibit three features: (1)
granularity in the sense of comprising a finite number of discrete
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units; (2) local bistability in the sense that individual units transition
spontaneously and independently between inactive and active states;
and (3) far-from-equilibrium operation in the sense that the entire
stochastic accumulation of discrete activity, from initial state to
threshold, proceeds far from the steady-state.

Accumulating activity with bistable units ensures a scaling
property because both accumulation rate 	drift and dispersion
rate 	noise change proportionally with sensory input. Accumu-
lating activity over a small range (from initial to threshold
level) ensures the high variability of FPT that is experimentally
observed. And accumulating activity far from equilibrium,
where activity disperses asymmetrically, ensures the shorter-
tailed FPT distributions that are observed (Figs. 3C, 7F ). Two
previous attempts to model multistable perception with
populations of bistable units (Taylor and Aldridge, 1974;
Gigante et al., 2009) failed to reproduce these statistics (De
Marco et al., 1977) because neither operated far enough from
equilibrium.

Collective dynamics of cortical columns or clusters
To what extent is the scenario outlined above consistent with, or
even supported by, the available evidence about the dynamics of
neocortical activity?

The postulated units idealize the well-known dynamics of
attractor assemblies (Amit, 1995). A neuronal assembly with
balanced excitation and inhibition may express two distinct
steady-states, a low activity (inactive state) and a high activity
state (active state), provided that recurrent excitation ampli-
fies inputs nonlinearly (Amit and Brunel, 1997; Wang, 2002;
Major and Tank, 2004). If this is the case, collective activity is
bistable and, driven by endogeneous fluctuations (finite-size
noise), transitions spontaneously between the two steady-
states. External inputs alter the relative stability of inactive and
active states and therefore modulate the transition rates. In
sum, balanced attractor assemblies exhibit all postulated
properties: local bistability, noise-driven transitions, and
input-dependent rates.

D

Time (s)
0 2 4

1

1.5

r/
r P

oi
ss

on
IS

I d
is

tri
bu

tio
n 

S
im

ul
.−

 P
oi

ss
on

 (%
)

-5

0

5

10

ISI (s)
0.1 10.30.03

strongly coupled
weakly coupled

E

B

Fi
rin

g 
ra

te
 r 

(H
z)

10

20

30

0

40

Time (s)
0 1 2 3 4 5

5

10

15

20

C
or

tic
al

 m
od

ul
es

A

Fi
rin

g 
ra

te
 r 

(H
z)

0

10

20

30

40

5

10

15

20

C
or

tic
al

 m
od

ul
es

Time (s)
0 1 2 3 4 5

Time (s)
0 1 2 3 4 5

Fi
rin

g 
ra

te
 r 

(H
z)

0

10

20

30

40

5

10

15

20

C
or

tic
al

 m
od

ul
es

C

strongly coupled:
  binary activity

weakly coupled:
  graded activity

Figure 8. Stochastic accumulation of collective activity by modular assemblies of spiking neurons. A, Strongly coupled assemblies expressing bistable attractor dynamics. Spike raster
of five representative neurons per assembly (left ordinate) and collective activity r(t) of all assemblies (red trace, right ordinate). Assemblies transition spontaneously and abruptly from
inactive to active states. B, Same as A, but with some assemblies being active initially. Assemblies transition spontaneously to active states and (less often) to inactive states. C, Weakly
coupled assemblies without bistable dynamics. The activity of each assembly fluctuates about a steady-state level, which rises progressively due to external input. Collective activity r(t)
is comparable to A (blue trace, right ordinate). D, SD �r of mean firing rate r(t) in A and C (red and blue trace, respectively), computed in 100 ms sliding windows relative to the SD
�rPoisson of inhomogeneous Poisson processes reproducing the observed r(t). The SD may be computed either over neurons or over trials. E, Distribution of interspike intervals (ISI) in
A and C (red and blue trace, respectively), relative to the ISI distribution of inhomogeneous Poisson processes. Colored shading represents the SD of ISI density.

Cao et al. • Ehrenfest Process Mimics Multistable Dynamics J. Neurosci., June 29, 2016 • 36(26):6957– 6972 • 6969



The crucial ingredient of attractor dynamics, recurrent excit-
atory connectivity, is well established for cortical columns and
clusters of columns. In the superficial layers of primate neocor-
tex, neurons are organized into radial columns with similar re-
sponse properties (Snodderly and Gur, 1995; Mountcastle, 1997;
Maier et al., 2010) and preferential recurrent connectivity (Doug-
las and Martin, 2004). Nearby columns with similar properties
are linked by “patchy” horizontal connections into locally dis-
persed clusters (Bosking et al., 1997; Lund et al., 2003; Tanigawa
et al., 2005; Muir and Douglas, 2011). The preferential excitatory
connectivity within clusters of columns shapes both the response
properties of individual neurons (Angelucci and Bressloff, 2006)
and the “patchy” patterns of activity evoked by stimulation
(Arieli et al., 1996; Bosking et al., 1997; Tsodyks et al., 1999).

Neocortical activity varies spontaneously even in the absence of
external stimulation and to a degree comparable to that evoked by
stimulation (Arieli et al., 1996; Destexhe et al., 2003). Interestingly,
the spatiotemporal structure of spontaneous activity often corre-
sponds closely to activity patterns evoked by sensory stimulation
(Kenet et al., 2003; Petersen et al., 2003; MacLean et al., 2005; Luczak
et al., 2007; Sakata and Harris, 2009; Harris et al., 2011). On the basis
of these observations, it has been suggested that cortex expresses only
a limited vocabulary of activity patterns and that this vocabulary is
explored more extensively by spontaneous activity than by evoked
activity (Luczak et al., 2009; Harris et al., 2011).

A slow exploration of a limited vocabulary of activity states is
exactly the dynamics expressed by interacting attractor assemblies
(Durstewitz and Deco, 2008; Litwin-Kumar and Doiron, 2012;
Wang, 2012). If excitatory connectivity is not uniform but forms
clusters of preferentially connected neurons, then these clusters may
express a slow dynamics (�10 Hz), transiently increasing or decreas-
ing their collective activity (Litwin-Kumar and Doiron, 2012). De-
spite the slow correlation, the timing of individual spikes in a cluster
remains asynchronous (Renart et al., 2010). External stimulation
biases the slow dynamics and, for stimulated clusters, selectively ex-
tends the periods of increased activity.

Whether or not cortical columns or clusters do indeed express
bona fide attractor dynamics remains an open question. Evidence
from anesthetized rodents and from in vitro preparations shows
that, at a minimum, cortical networks may enter into transient
states of enhanced excitability, which are characterized by a con-
sistently depolarized membrane potential, asynchronous spiking
activity, and nonlinear amplification of inputs (Haider and
McCormick, 2009; Harris et al., 2011). These states are main-
tained by a barrage of excitatory and inhibitory synaptic poten-
tials from recurrent connectivity.

Recent evidence from awake rodents and primates demon-
strates that many (not all) cortical neurons are strongly coupled
to local population activity (Okun et al., 2015), consistent with a
local attractor assembly. Sophisticated statistical approaches have
recovered evidence for sudden transitions between discrete activ-
ity states in sensory, motor, and parietal cortices of behaving
animals (Abeles et al., 1995; Jones et al., 2007; Latimer et al.,
2015). Even more intriguingly, laminar recording in extrastriate
visual cortex of awake primates revealed columnar activity to be
bimodal, transitioning between inactive and active states “nearly
simultaneously throughout the cortical dept” (Engel et al., 2015).
Transition times were random (Poisson statistics), and transition
rates were modulated by stimulus and task conditions, exactly as
expected from locally bistable assemblies (Engel et al., 2015). In
premotor cortex of awake primates, local multiunit activity was
found to be bimodal at 57 of 107 recorded locations (Mattia et al.,
2013). Additionally, the differential power spectrum of multiunit

activity was found to be consistent with bistable attractor dynam-
ics at a subset of recorded locations.

Conclusions and outlook
We have shown that the characteristic statistics of multistable
perception would be reproduced by perceptual representations
that comprise populations of attractor assemblies, such as corti-
cal columns or clusters of columns, each expressing a bistable
local dynamics, and that accumulate activity in a narrow range far
from equilibrium. This idealized scenario may be relaxed without
compromising the FPT statistics: the population may be hetero-
geneous in that assemblies may display different transition rates,
may encode different aspects of the stimulus, and may be situated
at different levels of a cortical hierarchy, provided all assemblies
contribute additively to collective activity.

The perceptual representation postulated here is well suited to
support reliable probabilistic inference by stochastic sampling
(Hinton and Sejnowski, 1986; Buesing et al., 2011). Specifically,
Langevin sampling by a modified Boltzmann machine (Geman
and Geman, 1984; Hoyer and Hyvärinen, 2003; Ma et al., 2006;
Sundareswara and Schrater, 2008; Churchland et al., 2011;
Gershman et al., 2012) offers a functional rationale as to why
competing perceptual representations should operate far from
equilibrium and at a low level of fractional activation: in this
regimen, microtrajectories involving only a few transitions may
be expected to acquire maximal influence (maximum caliber) on
the competition outcome (Ghosh et al., 2006; Pressé et al., 2013),
permitting inferences to be drawn with optimal reliability.
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