Posterior distributions for transformation coefficients in full or summarized form.
Source:R/coef.R
coef.tridim_transformation.Rd
Posterior distributions for transformation coefficients in full or summarized form.
Arguments
- object
An object of class tridim_transformation.
- summary
Whether summary statistics should be returned instead of raw sample values. Defaults to
TRUE
- probs
The percentiles used to compute summary, defaults to 89% credible interval.
- convert_euclidean
Whether to convert matrix coefficients to scale(phi) and rotation(theta). Defaults to
FALSE
.- ...
Unused
Value
If summary=FALSE, a list with matrix iterationsN x dimensionsN for each variable. If summary=TRUE, a data.frame with columns "dvindex" with mean for each dependent variable plus optional quantiles columns with names "dvindex_quantile".
Examples
euc2 <- fit_transformation(depV1+depV2~indepV1+indepV2,
data = NakayaData,
transformation = 'euclidean')
#>
#> SAMPLING FOR MODEL 'tridim_transformation' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0.001 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 10 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.099 seconds (Warm-up)
#> Chain 1: 0.117 seconds (Sampling)
#> Chain 1: 0.216 seconds (Total)
#> Chain 1:
# full posterior distribution
transform_posterior <- coef(euc2, summary=FALSE)
# coefficients' summary with 89% CI
coef(euc2)
#> Coef Mean 5.5 94.5
#> 1 a1 0.14168824 -0.003076626 0.2963707
#> 2 a2 -0.01401752 -0.179774781 0.1542889
#> 3 b1 1.34420438 1.231150184 1.4530545
#> 4 b2 -0.56897204 -0.683137157 -0.4677070
# scale and rotation coefficients
coef(euc2, convert_euclidean=TRUE)
#> Coef Mean 5.5 94.5
#> 1 a1 0.14168824 -0.003076626 0.2963707
#> 2 a2 -0.01401752 -0.179774781 0.1542889
#> 3 scale 1.46127601 1.347138581 1.5690809
#> 4 rotation -0.40028226 -0.473700616 -0.3291547