Computes posterior samples for the posterior predictive distribution.
Source:R/predict.R
predict.tridim_transformation.Rd
Predicted values based on the bi/tridimensional regression model object.
Usage
# S3 method for tridim_transformation
predict(object, newdata = NULL, summary = TRUE, probs = NULL, ...)
Arguments
- object
An object of class tridim_transformation
- newdata
An optional two column data frame with independent variables. If omitted, the fitted values are used.
- summary
Whether summary statistics should be returned instead of raw sample values. Defaults to
TRUE
- probs
The percentiles used to compute summary, defaults to NULL (no CI).
- ...
Unused
Value
If summary=FALSE, a numeric matrix iterationsN x observationsN x variablesN. If summary=TRUE, a data.frame with columns "dvindex" with mean for each dependent variable plus optional quantiles columns with names "dvindex_quantile".
Examples
euc2 <- fit_transformation(depV1+depV2~indepV1+indepV2,
NakayaData, transformation = 'euclidean')
#>
#> SAMPLING FOR MODEL 'tridim_transformation' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.097 seconds (Warm-up)
#> Chain 1: 0.091 seconds (Sampling)
#> Chain 1: 0.188 seconds (Total)
#> Chain 1:
# prediction summary
predictions <- predict(euc2)
# full posterior prediction samples
predictions <- predict(euc2, summary=FALSE)