Skip to contents

Transformation matrix, 2D or 3D depending on data and transformation type

Arguments

object

tridim_transformation object

summary

Whether summary statistics should be returned instead of raw sample values. Defaults to TRUE

Value

matrix 3x3 for 2D transformation or matrix 4x4 for 3D transformation

Examples

euc2 <- fit_transformation(depV1+depV2~indepV1+indepV2,
                           data = NakayaData,
                           transformation = 'euclidean')
#> 
#> SAMPLING FOR MODEL 'tridim_transformation' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 0 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 0.119 seconds (Warm-up)
#> Chain 1:                0.111 seconds (Sampling)
#> Chain 1:                0.23 seconds (Total)
#> Chain 1: 
transformation_matrix(euc2)
#>           [,1]       [,2]        [,3]
#> [1,] 1.3460547 -0.5698607  0.14297655
#> [2,] 0.5698607  1.3460547 -0.01113589
#> [3,] 0.0000000  0.0000000  1.00000000