Skip to contents

For detail refer to: Andrew Gelman, Ben Goodrich, Jonah Gabry, and Aki Vehtari (2018). R-squared for Bayesian regression models. The American Statistician doi:10.1080/00031305.2018.1549100 and https://avehtari.github.io/bayes_R2/bayes_R2.html

Usage

# S3 method for cumhist
bayes_R2(object, summary = TRUE, probs = c(0.055, 0.945), ...)

Arguments

object

An object of class cumhist

summary

Whether summary statistics should be returned instead of raw sample values. Defaults to TRUE

probs

The percentiles used to compute summary, defaults to 89% credible interval.

...

Unused.

Value

vector of values or a data.frame with summary

Examples

# \donttest{
br_fit <- fit_cumhist(br_singleblock, state = "State", duration = "Duration")
#> 
#> SAMPLING FOR MODEL 'historylm' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 0 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 6.827 seconds (Warm-up)
#> Chain 1:                5.52 seconds (Sampling)
#> Chain 1:                12.347 seconds (Total)
#> Chain 1: 
bayes_R2(br_fit)
#> # A tibble: 1 x 3
#>      R2 `5.5%` `94.5%`
#>   <dbl>  <dbl>   <dbl>
#> 1 0.335  0.196   0.452
# }