Function reference
-
bayes_R2(<cumhist>)
- Computes R-squared using Bayesian R-squared approach.
-
bistablehistory-package
bistablehistory
- Cumulative History Analysis for Bistable Perception Time Series
-
br
- Binocular rivalry data
-
br_contrast
- Binocular rivalry, variable contrast
-
br_singleblock
- Single run for binocular rivalry stimulus
-
br_single_subject
- Single experimental session for binocular rivalry stimulus
-
coef(<cumhist>)
- Extract Model Coefficients
-
compute_history()
- Computes cumulative history for the time-series
-
cumhist-class
cumhist
- Class
cumhist
.
-
extract_history()
- Computes history for a fitted model
-
extract_history_parameter()
- Extracts a history parameter as a matrix
-
extract_replicate_term_to_matrix()
- Extract a term and replicates it randomN times for each linear model
-
extract_term_to_matrix()
- Extracts a term with one column per fixed or random-level into a matrix
-
fast_history_compute()
- Computes cumulative history
-
fit_cumhist()
- Fits cumulative history for bistable perceptual rivalry displays.
-
fixef()
- Extract the fixed-effects estimates
-
historyef()
- Extract the history-effects estimates
-
history_mixed_state()
- Extract values of used or fitted history parameter mixed_state
-
history_parameter()
- Extract values of used or fitted history parameter
-
history_tau()
- Extract values of used or fitted history parameter tau
-
kde
- Kinetic-depth effect data
-
kde_two_observers
- Multirun data for two participants, kinetic-depth effect display
-
loo(<cumhist>)
- Computes an efficient approximate leave-one-out cross-validation via loo library. It can be used for a model comparison via loo::loo_compare() function.
-
nc
- Necker cube data
-
predict(<cumhist>)
- Computes predicted dominance phase durations using posterior predictive distribution.
-
predict_history()
- Computes predicted cumulative history using posterior predictive distribution.
-
predict_samples()
- Computes prediction for a each sample.
-
preprocess_data()
- Preprocesses time-series data for fitting
-
print(<cumhist>)
- Prints out cumhist object
-
summary(<cumhist>)
- Summary for a cumhist object
-
waic(<cumhist>)
- Computes widely applicable information criterion (WAIC).