Function reference
-
bayes_R2(<cumhist>) - Computes R-squared using Bayesian R-squared approach.
-
bistablehistory-packagebistablehistory - Cumulative History Analysis for Bistable Perception Time Series
-
br - Binocular rivalry data
-
br_contrast - Binocular rivalry, variable contrast
-
br_singleblock - Single run for binocular rivalry stimulus
-
br_single_subject - Single experimental session for binocular rivalry stimulus
-
coef(<cumhist>) - Extract Model Coefficients
-
compute_history() - Computes cumulative history for the time-series
-
cumhist-classcumhist - Class
cumhist.
-
extract_history() - Computes history for a fitted model
-
extract_history_parameter() - Extracts a history parameter as a matrix
-
extract_replicate_term_to_matrix() - Extract a term and replicates it randomN times for each linear model
-
extract_term_to_matrix() - Extracts a term with one column per fixed or random-level into a matrix
-
fast_history_compute() - Computes cumulative history
-
fit_cumhist() - Fits cumulative history for bistable perceptual rivalry displays.
-
fixef() - Extract the fixed-effects estimates
-
historyef() - Extract the history-effects estimates
-
history_mixed_state() - Extract values of used or fitted history parameter mixed_state
-
history_parameter() - Extract values of used or fitted history parameter
-
history_tau() - Extract values of used or fitted history parameter tau
-
kde - Kinetic-depth effect data
-
kde_two_observers - Multirun data for two participants, kinetic-depth effect display
-
loo(<cumhist>) - Computes an efficient approximate leave-one-out cross-validation via loo library. It can be used for a model comparison via loo::loo_compare() function.
-
nc - Necker cube data
-
predict(<cumhist>) - Computes predicted dominance phase durations using posterior predictive distribution.
-
predict_history() - Computes predicted cumulative history using posterior predictive distribution.
-
predict_samples() - Computes prediction for a each sample.
-
preprocess_data() - Preprocesses time-series data for fitting
-
print(<cumhist>) - Prints out cumhist object
-
summary(<cumhist>) - Summary for a cumhist object
-
waic(<cumhist>) - Computes widely applicable information criterion (WAIC).