Skip to contents

Computes cumulative history for each state in the time-series.

Usage

compute_history(
  data,
  state,
  duration = NULL,
  onset = NULL,
  random_effect = NULL,
  session = NULL,
  run = NULL,
  tau = 1,
  mixed_state = 0.5,
  history_init = 0
)

Arguments

data

A table with time-series.

state

String, the name of the column that specifies perceptual state. The column type should be a factor with two or three levels (the third level is assumed to correspond to a transition/mixed phase) or should be convertible to a two level factor (as it would be impossible to infer the identity of transition/ mixed phase).

duration

String, name of the column with duration of individual perceptual dominance phases. Optional, you can specify onset instead.

onset

String, name of the column with onsets of the perceptual dominance states. Optional, used to compute duration of the dominance phases, if these are not provided explicitly via duration parameter.

random_effect

String, name of the column that identifies random effect, e.g. individual participants, stimuli for a single participant, etc. If omitted, no random effect is assumed. If specified and there is more than one level (participant, stimulus, etc.), it is used in a hierarchical model.

session

String, name of the column that identifies unique experimental session for which a mean dominance phase duration will be computed (see norm_tau parameter). Code assumes that session IDs are different within a participant but can be the same between them. If omitted, a single mean dominance duration based on the entire time series is used.

run

String, name of the column that identifies unique runs/blocks. If omitted, the data is assumed to belong to a single time series. Code assumes that run IDs are different within an experimental session but can be the same between the session. E.g. session A, runs 1, 2, 3.. and session B, runs 1, 2, 3 but not session A, runs 1, 2, 1.

tau

Time constant of exponential growth/decay normalized to the mean duration of clear percepts within each session. Can be 1) a single positive number (>0) that is used for all participants and runs, 2) NULL (default) - a single value will be fitted for all participants and runs, 3) "random" - an independent tau is fitted for each random cluster, 4) "1|random"- a tau for a random cluster is sampled from a population distribution, i.e., pooled parameter values via a multilevel model.

mixed_state

Specifies an activation level during transition/mixed phases (state #3, see state). Either a single number (range 0..1) that will be used as a fixed level or a vector of two numbers c(mu, kappa) that specifies, correspondingly, mean (range 0..1) and precision (>0) of beta proportion distribution, it should be sampled from. Defaults to a fixed value of 0.5.

history_init

Initial value for cumulative history computation. Either a numeric scalar in 0..1 range or a vector of two numbers in 0..1 range. In the latter case, two histories will start at different levels.

Value

A matrix nrow(data) × 2 with computed history values

Examples

df <- compute_history(br_singleblock, state = "State",
                      duration = "Duration", tau = 1,
                      mixed_state = 0.5, history_init = 0)
#> Warning: Unknown or uninitialised column: `State`.