Skip to contents

Extracts models population-level coefficients history-specific terms for every modeled distribution parameter.

Usage

historyef(object, summary = TRUE, probs = c(0.055, 0.945))

Arguments

object

An object of class cumhist

summary

Whether summary statistics should be returned instead of raw sample values. Defaults to TRUE

probs

The percentiles used to compute summary, defaults to 89% credible interval.

Value

data.frame with values or summary

Examples

# \donttest{
br_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
#> 
#> SAMPLING FOR MODEL 'historylm' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 0 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 4.881 seconds (Warm-up)
#> Chain 1:                4.963 seconds (Sampling)
#> Chain 1:                9.844 seconds (Total)
#> Chain 1: 
historyef(br_fit)
#> # A tibble: 2 x 4
#>   DistributionParameter Estimate `5.5%` `94.5%`
#>   <fct>                    <dbl>  <dbl>   <dbl>
#> 1 shape                    1.05   0.104    2.00
#> 2 scale                    0.279 -0.767    1.30
# }