Skip to contents

Summary for a cumhist object

Usage

# S3 method for cumhist
summary(object, ...)

Arguments

object

A cumhist object

...

Unused

Value

Nothing, console output only.

Examples

# \donttest{
br_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
#> 
#> SAMPLING FOR MODEL 'historylm' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 0 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 4.321 seconds (Warm-up)
#> Chain 1:                4.917 seconds (Sampling)
#> Chain 1:                9.238 seconds (Total)
#> Chain 1: 
summary(br_fit)
#> Call: fit_cumhist(data = br_singleblock, state = "State", duration = "Duration")
#> 
#> Family: gamma
#> 
#> History parameters:
#> tau = 0.99
#> mixed state = 0.5
#> 
#> Linear model:
#> # A tibble: 2 x 5
#>   DistributionParameter Term    Estimate  `5.5%` `94.5%`
#>   <fct>                 <chr>      <dbl>   <dbl>   <dbl>
#> 1 shape                 History    1.02   0.0693    1.93
#> 2 scale                 History    0.296 -0.702     1.35
# }